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where sgn=11if r > 5, and sgn =(—1)?*9 if r <s; and x,, and
xg, are the x values of the centers of slots » and s respectively.
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A Uniform Asymptotic Expansion for the Green’s
Functions Used in Microstrip Calculations

John M. Dunn

Abstract —A wniform asymplotic approximation is developed in the
limit of small substrate thickness for the Green’s functions used in
microstrip-type problems. The approximation is valid for a single-layer
substrate. The expansions agree with near and far-field results previ-
ously published in the literature. Comparison of the approximation is
made with numerical evaluations of the exact integral solution available
for the problem.

1. INTRODUCTION

There is currently a great deal of interest in the numerical
computation of microstrip circuit parameters. One of the most
popular approaches has been the use of moment method tech-
niques. For example, Gardiol and Mosig [1], [2] have developed
algorithms for a complete moment method solution. (See also
Mosig [3].) These methods invariably require a knowledge of
various Green’s functions in order for the integral equation to
be properly formulated. Unfortunately, the Green’s functions
are of the Sommerfeld integral type and are not known in terms
of simple functions. The integrals that must be evaluated are
slow to converge and exhibit nearly singular behavior.

Various researchers have developed approximations to these
integrals in the limit of high and low frequencies and for near
and far fields. In this paper, I will develop an approximation
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which is uniformly valid for all distances from the source in the
limit where the substrate region is thin, which is typically the
case of interest for microstrip problems. The advantages of
having a uniform asymptotic expansion available are that it can
lead to much quicker evaluation of the matrix elements in the
discrete integral equation, and it gives the researcher a much
better feel for how the fields behave. In addition, it can serve as
the starting point for more accurate approximations if such
approximations are needed. There are a number of asymptotic
expansions available in the literature for Green’s functions of
this type. Unfortunately, none of them is valid for all distances
from the source. Approximations exist for the quasi-static re-
gion: |kypl < 1, where p is the radial distance from the dipole
source and k, is the free-space wavenumber [3]. Sophisticated
approximations exist for |kp| > 1, where k is the wavenumber of
the substrate [4]. The main result presented in this paper is to
show how such expressions can be combined to make a uniform
approximation for all distances, p, if the substrate is electrically
thin. The method is based on work carried out by Wu and King
[6], [7]; their work examines the two-layer semi-infinite problem.
In addition, King [8] has carried out an analysis of the microstrip
case for thin substrates when the distance from the source is
much greater than a substrate thickness.

The approximations are derived in the next section. The
results are compared with numerical evaluations of the exact
Green’s functions in the third part of the paper.

II. DeRrRIVATION OF THE FORMULAS

In this section, the uniform asymptotic expansions are de-
rived. The expansions are developed for the scalar and vector
potentials rather than for the electromagnetic fields. This is
done because they have slightly simpler integrals to evaluate,
and because it is useful to formulate moment method numerical
equations in terms of potentials. It is possible to work directly
from the fields if one wishes.

We use the formulas given in Mosig [3] as the basis of the
expansions. It is shown that the electric and magnetic fields can
be written as

E=—-VV—jowd

B=vxAd )

where E and B are the clectric field and magnetic flux density
vectors, A is the vector potential, and V' is the scalar potential,
defined in the usual way. The equations are written in the
frequency domain with an (exp(jwt)) time dependence as-
sumed. MKS units are used. A unit strength time-harmonic
electric dipole is placed on the interface between the air and
substrate regions and is oriented in the x direction (see Fig. 1).
The coordinate system is chosen so that the z axis is vertical.
The interface between the two media is on the z = 0 plane, and
the perfectly conducting ground plane is on the z = — & plane.
The substrate thickness is, therefore, 4. Quantities which refer
to the upper region have a subscript 0. It is shown in [3] that the
fields from the dipole can be completely determined if the
Green’s functions are known: G:4(p,0) and G,(p,0). GL(p,0)
is the xx component of the dyadic Green’s function for the
vector potential A arising from a unit electric dipole in the x
direction at the origin. G, is the Green’s function for the scalar
potential V. To get the actual potentials for a given charge and
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Fig. 1. Geometry of the problem. The dipole is located on the inter-

face between the substrate and the air.

current distribution, G, is integrated with the charge, and G;i
is integrated with the current. The moment method equations
are - therefore formulated with both charge and current cells.
This type of formulation has certain numerical advantages,
although charge conservation must be enforced numerically.

It is natural to define a cylindrical coordinate system with p’
being a radial vector going out from the origin. By symmetry, the
Green'’s functions will depend only on p and z, not the angular
coordinate, ¢. In this paper expressions are developed only for
the Green’s functions at the interface between the two media,
z = (. This is because in microstrip applications the metal circuit
is on the substrate’s surface.

The exact expressions for the Green’s functions are [3]

. oy _ Mo k
ij(p,O)EAx(p)=ﬁ/0 dkaO(kﬂp)_Dé

1

o uy + utanh (uh)
Gu(7.0) = V() = 5 | dk,Jo(kpp) k=5 ——
©)
where
D1g =ugy + ucoth(uh)
Dy = €,1y + utanh (uh) 3)

o being the free-space permeability; magnetic materials are
excluded from this discussion. The quantity e, is the relative
permittivity of the substrate region, J, is a Bessel function of
order zero, and u, and u are two functions of the integration

variable k,:
ug=1/k;—k§
w=y/k2—k?. (4)

Here k, is the free-space wavenumber, and & =\/e_, kg is the
wavenumber of the substrate region. It is assumed that the
substrate is lossless. The functions are given unique definitions
in the complex k, plane by requiring that Re(u)>0 and
Re(uy)> 0 for all k,. There are no branch cuts for u as the
integrands are even in u. (See Felsen and Marcuvitz [4] for
details concerning the choice of cuts.) Integrals of the type
discussed in this paper are known in the literature as Sommer-
feld integrals. These integrals typically do not converge when
the source and the point of observation are located in the same
plane, because of their behavior as k, —. The integrals can be
given an unambiguous meaning by defining them to be the limit
as the source point goes to the interface.
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The asymptotic expansions for the Green’s functions are now
developed. The goal is to obtain formulas that are valid in the
limit of small substrate thickness: |ky/| << 1. This condition is
usually realized in practical microstrip structures; if it is not,
there will be undesirable surface waves generated which will
adversely affect the circuit’s performance. By a uniform expan-
sion is meant an expansion that is valid for all values of radial
distance, p. Such an expansion has an advantage over more
conventional expansions in that it is not necessary to worry
about when to switch from one approximation to another.

The first step in deriving a uniform asymptotic expression for
the potentials is to develop expansions for A and V for p>> h
in the limit |kqh| < 1. This is carried out in a straightforward
way; the integrands are expanded for small |k, k| The resulting
integrals are known analytically. It is found that

27 hZekor 1
—sz——n—[koi‘+—]
Ko . p
: ,k3 11
2megV = —e KoP| —(e, — 1) —+ 5| —+ijko||. (5)
r P

These expressions are valid for O({kyk|*). The next order cor-
rection is O(kyhl*).

Equation (5) for V is not correct in its present form. It
predicts that V' will decay as 1/p for large distances. This
cannot be true. The exact integrand for V' contains a pole at
k,= K- This pole occurs where Dyy(k .)=0. The pole,
however, is lost when the approximation leading to (5) is carried
out. Two modifications to the expression must be made. First of
all, the surface wave contribution from the pole must be in-
cluded. Second, the effect of a branch cut near the pole must be
included. The pole near the branch cut can be examined by
looking at a simplified integral which can be analytically evalu-
ated and yet retains the essential behavior near the pole. The
integral used is

ug+uh

T=h[ dk k
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The last two terms of the integrand can be evaluated exactly;
they give the approximation for V in (6) (with a minus sign). The
first term in (6) is a simplified version of the exact integrand, but
one which keeps the pole. The total integrand in (6) is signifi-
cant only near the pole. It can therefore be simplified. For small

{kqhl, the pole’s position, k., is given by
(k3 —k?)*n?
Kpoie = ko + ~—————+ O((kh)*). 7
pole 0 ZErsz (( ) ) ( )

The integrand is expanded around the pole. A new variable, 7,
is defined by

k,=ko(1+m7) (8)
where m is given by
R (k3 —k2)’

m
212
ZErkO

©)

Notice that |m|<1 by assumption. This change of variables
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gives approximate values of u and u, of
ki — k>
ug=vamrk. (10)

The resulting integral in 7 can be evaluated analytically after
the Bessel function is converted to its far-field form. The proce-
dure is very similar to that carried out in the appendix of [6].
The resulting expression for I is

I=A(1-¢,)j2me "™erfc(Vae™™/%) (11)
where 4 and « are given by
2
A= hicom 2 e Tkopgim/4
2e, wkop
a=kypm (12)
and where “erfc” is the complementary error function [9],
2
erfc(x)=—[ die %, 13
(== a4 (13)

The surface wave term and the integral 7 must be added 10 the
expression for 7 in (5) to get a valid approximation for p = A. It
should be noted that when p is very large, the asymptotic
expansion for large argument for the complementary error func-
tion may be used. The leading order term will cancel the 1/p
term in (5). The first nonzero contribution will therefore be
1/p%, as expected. The surface wave term will eventually domi-
nate, as it goes as 1/ \/; for large p.

The approximations discussed so far are valid only for p > A,
to O(kyhl®). It is not known how to get an approximation for
p << h. However, there are known quasi-static approximations
for which |kpl <1 [3]. These expressions are valid if p is small
enough. What is not clear is whether the quasi-static expressions
and the p >} expression have any common region of validity.
The quasi-static approximations for 4, and V are

447 e TkoRg  p—ikoRy
—A, = — .
Ko R, R,
e 7koRg o 4 e kR,
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where
R? == p? +(2ih)* (15)
and
e, —1 16
= € +1 ’ (16)

Equations (14) are expanded for p > h. The expression for A,
is found to agree with that in (5) to O(|kyhl|*). The expression
for V' in (14) can be expanded for p > h using contour integra-
tion. The series is rewritten as an integral:

0
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where the contour goes counterclockwise around the positive

e—jkm/pz+4h2)‘Z (17)
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real axis. The contour is then deformed to lie on the line
A=1/2. The integrand is expanded for small 4. It is found that

«© ,rll
lim (—1) —e kR
lh/pl—=0 ;-1 R,

z—l 1 e_]kop
pi\l+q

_f_(ihz)(u)e—fkop(ﬁ_%)_ (18)
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The 1/p term cancels the 1/p term in (14). The 1/p? and 1/p3
terms match up with the corresponding terms in (5). The quasi-
static expression thereby matches up with the approximation for
p>hto O(Ikohlz), and a uniformly asymptotic expression can
be written. It is found that

hk2(e, — 1)
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+ A(1—e,)j2me ' *erfc(Va e 77/4)
+ surface wave term. (19)
The surface wave term must be included for a complete descrip-
tion of V. After some manipulation, it can be shown that the
surface wave contribution is as follows:

surface wave term
TiHE( KpoleP) Uge, 20
kel e, /1o +1/u(tanh (uh) + uhsech® (uh))| (20)

The expression for the surface wave can be simplified for small
substrate thickness. Expressions for k., given by (7), and for
ug, given by (10), are substituted into (20). It is found that

k2 — 2|3 3
surfave wave term = mjH{?( k poiep) —OT— +O(lkhl%).
ek}

(21)

The most time consuming part of the calculation of (19) is
that of summing the series. In practice, it is found that the
approximation given in (18) can be safely used when |p| > 104
for €, in the range of 12.9. The substitution of (18) into (19)
greatly speeds up the calculation.

III. CompaRISON wWiTH NUMERICAL RESULTS

In this section, the approximate expressions are compared
with numerical evaluation of the exact integrals. The numerical
evaluations were carried out using methods similar to those used
by Mosig [3]. The expression for A4, is not examined here as it is
identical to the quasi-static expression previously discussed in
the literature. For example, a number of curves comparing this
approximation with a numerical evaluation of the exact integrals
are shown in [3]. ‘

In Fig. 2 are shown plots of the magnitude of V" versus radial
distance for three different substrate thicknesses. Both distance
and thickness are normalized to the free-space wavenumber, k.
Values of kqk of 0.05, 0.15, and 0.25 are shown. The substrate’s
relative permittivity is chosen to be that of GaAs, e, =12.9.
Decibel scales are used for both the magnitide of ¥ (20log,, 1V
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Fig. 2. Comparison of numerical calculations and the analytical ap-
proximation for |V]. Distance is in dB: log,, k,p. Results are shown for
koh =0.05, 0.15, and 0.25.

and kq,p(20log,, lkopl). The agreement between the numerical
calculations and analytical approximation gets progressively
worse as the substrate thickness is increased. The largest error
occurs for the value of k,p near —13 dB. The reason is that the
approximation for ¥ in (19) has two 1/p terms in it. These
terms dominate all others for small values of p. The first of
these terms is due to the approximate expression for p > 4. The
second is due to the direct term in the quasi-static approxima-
tion. The direct term should dominate for distances close to the
dipole, as can be scen from the numerical results. The first 1/p
term is assumed to be negligible compared with the direct term,
as it is smaller by a factor |k0h|2. It is seen from (19) that this is
true when

2
r

(er - l)z(er + 1) .

This condition is violated for values of ky# = 0.25. The solution
to this problem is that one should not include the first 1 /p term
for small values of p. (The surface wave term should not be
included either. This, however, gives negligible corrections, as
the surface wave will go as log |p| for small values of p, which is
much smaller than 1/p.)

The maximum relative error for the points plotted for kyh =
0.05 is about 1.5% if the 1/p term mentioned above is left out
for p < A. Similarly, the maximum relative error for kyh = 0.15
is approximately 6%, and for kyh = 0.25 is approximately 11%
for the points plotted.

lkhol* <

(22)
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Efficient Computation of the Free-Space Periodic
Green’s Function

Surendra Singh and Ritu Singh

Abstract —The application of Shanks’s transform is shown to improve
the convergence of the series representing the doubly infinite free-space
periodic Green’s function. Higher order Shanks transforms are com-
puted via Wynn’s ¢ algorithm. Numerical results confirm that a dra-
matic improvement in the convergence rate is obtained for the “on-
plane” case, in which the series converges extremely slowly. In certain
instances, the computation time can be reduced by as much as a factor
of a few thousands. A relative error measure versus the number of terms
taken in the series is plotted for various values of a convergence factor
as the observation point is varied within a unit cell. Computation times
are also provided.

I. INTRODUCTION

The problem of determining the radiation or scattering from a
periodic array geometry is formulated in terms of an integral
equation. The integral equation is solved numerically via the
method of moments. In the moment method solution the un-
known surface current or field is expanded either in terms of
entire domain basis functions at the expense of generality or in
terms of subdomain basis functions at the expense of higher
computation cost. In order to achieve the degree of generality
required in developing general-purpose computer codes, it is
necessary to employ subsectionally defined basis functions. This
requires repeated computations of the free-space periodic
Green’s function. The Green’s function for a two-dimensional
periodic array (of point sources of radiating elements or con-
ducting strips) is represented in terms of a doubly infinite series.
This series converges extremely slowly as the observation point
approaches the source plane. In the moment method solution
for the current distribution on the radiator in the reference cell
of a two-dimensional infinite periodic array of radiating ele-
ments, the observation point lies in the plane of the array. This
case is referred to as the on-plane case, and the series has the
slowest convergence rate. In comparison with other methods
that make use of Kummer’s transform to accelerate the conver-
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