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where sgn = 1 if r > s, and sgn = (– I)p+q if r <s; and XO,. and

XO, are the x values of the centers of slots r and s respectively.
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A Uniform Asymptotic Expansion for the Green’s

Functions Used inl Microstrip Calculations

John M. Dunn

Abstract —A uniform asympl otic approximation is developed in the

limit of small substrate thickness for the Green’s functions used in
microstrip-type problems. The approximation is valid for a single-layer

substrate. The expansions agree with near and far-field results previ-
ously published in the literature. Comparison of the approximation is
made with numerical evaluations of the exact integral solution available
for the problem.

I. INTRODUCTION

There is currently a great deal of interest in the numerical

computation of microstrip circuit parameters. One of the most

popular approaches has been the use of moment method tech-

niques. For example, Gardiol and Mosig [1], [2] have developed

algorithms for a complete moment method solution. (See also

Mosig [3].) These methods invariably require a knowledge of

various Green’s functions in order for the integral equation to

be properly formulated. Unfortunately, the Green’s functions

are of the Sommerfeld integral type and are not known in terms

of simple functions. The integrals that must be evaluated are

slow to converge and exhibit nearly singular behavior.

Various researchers have developed approximations to these

integrals in the limit of higlh and low frequencies and for near

and far fields. In this paper, I will develop an approximation

Manuscript received July 9, 1990 revised February 27, 1991. This
work was sutmorted bv the National Science Foundation under Contract
ECS-891038i: -

The author is with the Department of Electrical and Com\puter
Engineering, Box 425, University of Colorado, Boulder, CO 80309.

IEEE Log Number 9100848.

which is uniformly valid for all distances from the source in the

limit where the substrate region is thin, which is typically the

case of interest for microstrip problems. The advantages of

having a uniform asymptotic expansion available are that it can

lead to much quicker evaluation of the matrix elements in the

discrete integral equation, and it gives the researcher a much

better feel for how the fields behave. In addition, it can serve as

the starting point for more accurate approximations if such

approximations are needed. There are a number of asymptotic

expansions available in the literature for Green’s functions of

this type. Unfortunately, none of them is valid for all distances

from the source. Approximations exist for the quasi-static re-

gion: IkOpl <<1, where p is the radial distance from the dipole
source and kO is the free-space wavenumber [3]. Sophisticated

approximations exist for Ikp I >1, where k is the wavenumber of

the substrate [4]. The main result presented in this paper is to

show how such expressions can be combined to make a uniform

approximation for all distances, p, if the substrate is electrically

thin. The method is based on work carried out by Wu and King

[6], [7]; their work examines the two-layer semi-infinite problem.

In addition, King [81has carried out an analysis of the microstrip
case for thin substrates when the distance from the source is
much greater than a substrate thickness.

The approximations are derived in the next section. The
results are compared with numerical evaluations of the exact
Green’s functions in the third part of the paper.

II. DERIVATION OF THE FORMULAS

In this section, the uniform asymptotic expansions are de-

rived. The expansions are developed for the scalar and vector

potentials rather than for the electromagnetic fields. This is

done because they have slightly simpler integrals to evaluate,

and because it is useful to formulate moment method numerical

equations in terms of potentials. It is possible to work directly

from the fields if one wishes.

We use the formulas given in Mosig [3] as the basis of the

expansions. It is shown that the electric and magnetic fields can

be written as

~=– VV– jaA”

~= VxA” (1)

where ~ and ~ are the electric field and magnetic flux density

vectors, A+ is the vector potential, and V is the scalar potential,

defined in the usual way. The equations are written in the

frequency domain with an (exp (.joJ t)) time dependence as-

sumed. MKS units are used. A unit strength time-harmonic

electric dipole is placed on the interface between the air and

substrate regions and is oriented in the x direction (see Fig. 1).

The “coordinate system is chosen so that the z axis is vertical.

The interface between the two media is on the z = O plane, and

the perfectly conducting ground plane is on the z = – h plane.

The substrate thickness is, therefore, h. Quantities which refer

to the upper region have a subscript O. It is shown in [3] that the

fields from the dipole can be completely determined if the

Green’s functions are known: G.$.(F, O) and GJP, O). G.~(Z O)
is the xx component of the dyadic Green’s function for the
vector potential A arising from a unit electric dipole in the x

direction at the origin. Gv is the Green’s function for the scalar
potential V. To get the actual potentials for a given charge and
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Fig. 1. Geometry of the problem. The dipole is located on the inter-
face between the substrate and the air.

current distribution, G” is integrated with the charge, and GX<

is integrated with the current. The moment method equations

are therefore formulated with both charge and current cells.

This type of formulation has certain numerical advantages,

although charge conservation must be enforced numerically.

It is natural to define a cylindrical coordinate system with ~

being a radial vector going out from the origin. By symmetry, the

Green’s functions will depend only on p and z, not the angular

coordinate, ~, In this paper expressions are developed only for

the Green’s functions at the interface between the two media,

z = O. This is because in microstrip applications the metal circuit

is on the substrate’s surface.

The exact expressions for the Green’s functions are [3]

(2)

where

DT~=uo+ucoth(uh)

DT~ = C,uo + utanh(uh) (3)

MO being the free-space permeability; magnetic materials are

excluded from this discussion. The quantity e, is the relative

permittivity of the substrate region, Jo is a Bessel function of

order zero, and u, and u are two functions of the integration

variable kp:

“O=m

4U= k;–k2. (4)

Here k. is the free-space wavenumber, and k =&k. is the

wavenumber of the substrate region. It is assumed that the

substrate is Iossless. The functions are given unique definitions

in the complex kp plane by requiring that Re (u)> O and

Re (uo) >0 for all kp. There are no branch cuts for u as the

integrands are even in u. (See Felsen and Marcuvitz [4] for

details concerning the choice of cuts.) Integrals of the type

discussed in this paper are known in the literature as Sommer-

feld integrals. These integrals typically do not converge when

the source and the point of observation are located in the same

plane, because of their behavior as kp - CO.The integrals can be

given an unambiguous meaning by defining them to be the limit

as the source point goes to the interface.

The asymptotic expansions for the Green’s functions are now

developed. The goal is to obtain formulas that are valid in the

limit of small substrate thickness: \koh I <<1. This condition is

usually realized in practical microstrip structures; if it is not,

there will be undesirable surface waves generated which will

adversely affect the circuit’s performance. By a uniform expan-

sion is meant an expansion that is valid for all values of radial

distance, p. Such an expansion has an advantage over more

conventional expansions in that it is not necessary to worry

about when to switch from one approximation to another.

The first step in deriving a uniform asymptotic expression for

the potentials is to develop expansions for Ax and V for p >> h

in the limit Ikoh I <<1. This is carried out in a straightfonvard

way; the integrands are expanded for small ]koh /. The resulting

integrals are known analytically. It is found that

h2.e-kw

‘Ax = — [1koj + ~
w’, P2 P

hz

[

Zk; 1 1
27-reov= —

e: ( )]

~–jlcop _(fr–l) —+7 —+jko . (5)
P P

These expressions are valid for 0(/ kohl 2). The next order cor-

rection is 0(1 koh14).
Equation (5) for V is not correct in its present form. It

predicts that V will decay as 1/p for large distances. This

cannot be true. The exact integrand for V contains a pole at

kP = kPO1e. This pole occurs where D~~(kPO1e) = O. The pole,

however, is lost when the approximation leading to (5) is carried

out. Two modifications to the expression must be made. First of

all, the surface wave contribution from the pole must be in-

cluded. Second, the effect of a branch cut near the pole must be

included. The pole near the branch cut can be examined by

looking at a simplified integral which can be analytically evalu-

ated and yet retains the essential behavior near the pole. The

integral used is

-$-~[(k&k2)-:]]. (6)

The last two terms of the integrand can be evaluated exactly;

they give the approximation for V in (6) (with a minus sign). The

first term in (6) is a simplified version of the exact integrand, but

one which keeps the pole. The total integrand in (6) is signifi-

cant only near the pole. It can therefore be simplified. For small

/kohl, the pole’s position, kPOle, is given by

The integrand is expanded around the pole. A new variable, r,

is defined by

kp = ko(l+ m,)

where m is given by

h2(k&k2)2
m.

2~;k; “

(8)

(9)

Notice that Iml <<1 by assumption. This change of variables
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gives approximate values of u and UO of

uo=zko. (lo)

The resulting integral in r can be evaluated analytically after

the Bessel function is converted to its far-field form. The proce-

dure is very similar to that carried out in the appendix (of [6].

The resulting expression for 1 is

1= A(l– ●r)j2~e –j~ erfc ( &e –j~/d ) (11)

where A and a are given by

rhk~m 2
A=— — ~–]kope]~/4

2e, mkop

a = kopm (12)

and where “erfc” is the complementary error function [9],

(13)

The surface wave term and the integral I must be added lo the

expression for V in (5) to get a valid approximation for p z> h. It

should be noted that when p is very large, the asymptotic

expansion for large argument for the complementary error func-

tion may be used. The leading order term will cancel the I/p

term in (5). The first nonzero contribution will therefore be

I/pz, as expected. The surface wave term will eventually domi-

nate, as it goes as l\~ for large p.
The approximations discussed so far are valid only for ps> h,

to O(\ kOh12). It is not known how to get an approximatic,n for

p <<h, However, there are known quasi-static approximations

for which lkOpl <1 [3]. These expressions are valid if p is small

enough. What is not clear is whether the quasi-static expressions

and the p >> h expression have any common region of va Iidity.

The quasi-static approximations for Ax and V are

[

e –]ko% e–]koRt

47r.ov=(l-?7) ~-–(l+q) j (–q)’-lT-
0 i=l J

(14)

where

R?== p’ +(2ih)2

and

(15)

(16)

Equations (14) are expanded for p>> h. The expression for Ax

is found to agree with that in (5) to 0(1 koh 12). The expression

for V in (14) can be expanded for p>> h using contour integra-

tion. The series is rewritten as an integral:

1
—— #..dAz- e–JkO_ (17)

sm (7A) 4=

where the contour goes counterclockwise around the positive

real axis. The contour is then deformed to lie on the line

A = 1/2. The integrand is expanded for small h. It is found that

The l\p term cancels the l\p term in (14). The l\p2 and l\p3
terms match up with the corresponding terms in (5). The quasi-

static expression thereby matches up with the approximation for

p >> h to 0(1 koh 12), and a uniformly asymptotic expression can

be written. It is found that

h2k;(e, – 1)2
2iTEov= – e–JkOp

~;P

+ A(l– e,)j2me ‘J” erfc ( fie ‘J*/4)

+ surface wave term. (19)

The surface wave term must be included for a complete descrip-

tion of V. After some manipulation, it can be shown that the

surface wave contribution is as follows:

surface wave term

)r jHf2)( kpO,ep u ~ET

= k&~e[e,\t~O +1/u(tanh(uh) + uhsech2(uh))] “ ’20)

The expression for the surface wave can be simplified for small

substrate thickness. Expressions for kPO1e, given by (7), and for

Uo, given by (10), are substituted into (20). It is found that

lk:-k’13h3
surfave wave term = ~jlf$~( kPOl,p) +O(lkhl’).

c;k;

(21)

The most time consuming part of the calculation of (19) is

that of summing the series. In practice, it is found that the

approximation given in (18) can be safely used when Ipl z 10lhl
for C, in the range of 12.9. The substitution of (18) into (19)

greatly speeds up the calculation.

III. COMPARISON WITH NUMERICAL RESULTS

In this section, the approximate expressions are compared

with numerical evaluation of the exact integrals. The numerical

evaluations were carried out using methods similar to those used

by Nfosig [3], The expression for Ax is not examined here as it is

identical to the quasi-static expression previously discussed in

the literature. For example? a number of curves comparing this

approximation with a numerical evaluation of the exact integrals

are shown in [3].

In Fig, 2 are shown plots of the magnitude of V versus radial

distance for three different substrate thicknesses. Both distance

and thickness are normalized to the free-space wavenumber, ko.

Values of koh of 0.05, 0.15, and 0.25 are shown. The substrate’s

relative permittivity is chosen to be that of GaAs, c, = 12.9.

Decibel scales are used for both the magnittide of V (20 log lo IVI)
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Fig. 2. Comparison of numerical calculations and the analytical ap-
proximation for lV1. Distance isindB: loglokop. Results are shown for
kolr = 0.05, 0.15, and 0.25.

and kOp(2010g101kopl). The agreement between the numerical

calculations and analytical approximation gets progressively
worse as the substrate thickness is increased. The largest error
occurs forthevdueof kOp near –13dB. Thereasonis that the
approximation for V in (19) has two I/p terms in it. These
terms dominate all others for small values of p. The first of
these terms is due to the approximate expression for p >> h. The
second is due to the direct term in the quasi-static approxima-
tion. The direct term should dominate fordistances close to the
dipole, as can be seen from the numerical results. The first I/p
term is assumed to be negligible compared with the direct term,
as it is smaller bya factor ]kOh12.It is seen from (19) that this is
true when

(22)

This condition is violated for values of koh = 0.25. The solution

to this problem is that one should not include the first lip term

for small values of p. (The surface wave term should not be

included either. This, however, gives negligible corrections, as

the surface wave will go as log Ip] for small values of p, which is

much smaller than 1/p.)
The maximum relative error for the points plotted for /coh =

0.05 is about 1.5Y. if the l\p term mentioned above is left out

for p <h. Similarly, the maximum relative error for kolr = 0.15

is approximately 670, and for koh = 0.25 is approximately 11%

for the points plotted.
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Efficient Computation of the Free-Space Periodic

Green’s Function

Surendra Singh and Ritu Singh

Abstract —The application of Shanks’s transform is shown to improve

the convergence of the series representing the doubly infinite free-space

periodic Green’s function. Higher order Shanks transforms are com-
puted via Wynn’s ● algorithm. Numerical resnlts confirm that a dra-
matic improvement in the convergence rate is obtained for the “on-

plane” case, in which the series converges extremely slowly. In certain
instances, the computation time can be rednced by as much as a factor

of a few thonsands. A relative error measnre versus the number of terms
taken in the series is plotted for various valnes of a convergence factor
as the observation point is varied within a unit cell. Computation times
are also provided.

I. INTRODUCTION

The problem of determining the radiation or scattering from a

periodic array geometry is formulated in terms of an integral

equation. The integral equation is solved numerically via the

method of moments. In the mom&t method solution the un-

known surface current or field is expanded either in terms of

entire domain basis functions at the expense of generality or in

terms of subdomain basis functions at the expense of higher

computation cost. In order to achieve the degree of generality

required in developing general-purpose computer codes, it is

necessary to employ subsectionally defined basis functions. This

requires repeated computations of the free-space periodic

Green’s function. The Green’s function for a two-dimensional

periodic array (of point sources of radiating elements or con-

ducting strips) is represented in terms of a doubly infinite series.

This series converges extremely slowly as the observation point

approaches the source plane. In the moment method solution

for the current distribution on the radiator in the reference cell

of a two-dimensional infinite periodic array of radiating ele-

ments, the observation point lies in the plane of the array. This

case is referred to as the on-plane case, and the series has the

slowest convergence rate. In comparison with other methods

that make use of Kummer’s transform to accelerate the conver-
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